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Abstract— Accurate posture alignment is crucial to realizing
the full therapeutic benefits of yoga, yet most practitioners lack
real-time professional guidance. This paper proposes a realtime
Yoga Pose Detection and Correction System that integrates
computer vision with machine learning for precise, automated
feedback. Using MediaPipe Pose for robust skeletal landmark
detection, the system extracts biomechanical features to analyze
posture through three distinct models: a Convolutional Neural
Network (CNN) for pose heatmap recognition (42.27%
accuracy), an XGBoost classifier for kinematic feature analysis
(100% accuracy), and a Support Vector Machine (SVM) for
spatial feature classification (97.94% accuracy). The framework
offers dynamic visual feedback by comparing detected poses
with reference alignments and highlighting deviations.
Experimental results reveal that each model has specific
strengths—CNN in handling complex visual data, XGBoost in
clinical-grade classification, and SVM in lightweight, high-
performance tasks. The proposed system achieves real-time
responsiveness suitable for consumer-level applications and has
potential extensions in rehabilitation and physiotherapy. Future
work will focus on multi-view estimation and user-specific
adaptation using continual learning techniques

Keywords— Yoga Pose Detection, MediaPipe Pose,
Convolutional Neural Networks (CNN), XGBoost, SVM, Real-
time Feedback.

. INTRODUCTION (HEADING 1)

Human pose estimation has emerged as a transformative
technology with applications spanning healthcare, fitness,
rehabilitation, and human-computer interaction. Real-time
pose detection and correction systems offer unprecedented
opportunities to enhance physical training, mitigate injury
risks, and democratize access to expert guidance in disciplines
like yoga. While traditional approaches leverage machine
learning (e.g., SVMs, XGBoost) and deep learning (e.g.,
CNNs) for posture analysis, each paradigm presents unique
trade-offs in accuracy, computational efficiency, and
generalization capabilities.

A. Motivation

Yoga’s therapeutic benefits are contingent on precise
biomechanical  alignment.  For  instance, common
misalignments like lumbar hyperextension in Downward-
Facing Dog or knee mispositioning in Warrior 1l can lead to
chronic musculoskeletal injuries when practiced incorrectly.
With over 300 million practitioners worldwide—many
lacking access to certified instructors—there exists a critical
need for automated systems that provide real-time,
personalized feedback. Our work addresses this gap by
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developing an accessible Al-powered solution that replicates
expert supervision.

B. Problem Statement

Existing pose estimation methods primarily rely on deep
learning-based architectures such as CNNs, which excel at
extracting spatial features but may struggle with variations
in pose, occlusions, and generalization across different
individuals. Machine learning models such as Support
Vector Machines (SVMs) and XGBoost provide alternative
approaches that can leverage structured pose data for
classification and correction. This research investigates and
compares three different approaches for yoga pose detection
and correction: * CNN-Based Approach — Using a
Convolutional Neural Network to detect and classify yoga
poses based on extracted skeletal features. « XGBoost
Approach — Implementing the XGBoost algorithm for pose
classification using structured numerical pose data. « SVM-
Based Approach — Employing Support Vector Machines to
distinguish correct and incorrect poses based on feature
engineering.

C. Contributions

This research makes the following contributions:

* A comparative analysis of CNN, XGBoost, and
SVMbased models for yoga pose estimation and correction.
* An evaluation of model accuracy, real-time performance,
and correction efficiency across the three approaches.

* A discussion of the strengths and limitations of traditional
machine learning vs. deep learning methods in pose
estimation.

* A benchmarking study to identify the most effective
method for real-world yoga applications.

D. Paper Organization

The remainder of this paper is organized as follows:

* Section 2 provides an overview of related work in pose
estimation and correction.

* Section 3 explains the methodologies employed for each
approach.

* Section 4 presents the experimental setup, dataset details,
and evaluation metrics.

* Section 5 discusses the results and comparative analysis.
* Section 6 concludes the study with findings, limitations,
and future directions



Il. RELATED WORK

Yoga pose detection systems have shown varying accuracy
levels depending on the methods and training datasets used.
Most studies report accuracy between 70% to 90%, with some
advanced techniques achieving higher rates. These systems
face challenges from lighting conditions, clothing differences,
pose complexity, and individual body variations [1].

Palanimeera et al. [1] developed a classification system for
sun salutation poses using four machine learning approaches:
Logistic Regression, SVM, Naive Bayes, and KNN. Their
pose estimation algorithm created real-time skeletal drawings,
with  KNN achieving the best accuracy at 96%. This
established important baselines for machine learning
applications in yoga pose recognition.

Kishore et al. [2] advanced the field by implementing deep
learning techniques using five architectures: EpipolarPose,
OpenPose, PoseNet, MoveNet, and MediaPipe. After training
on five common yoga poses, MediaPipe showed the highest
accuracy while MoveNet proved fastest, operating 12 times
quicker than OpenPose. This demonstrated the trade-offs
between accuracy and speed in pose estimation systems.

The Infinity Yoga Tutor system by Rishan et al. [3] used
camera input and OpenPose to identify 25 body keypoints
from the BODY 25 dataset. By analyzing frame sequences,
their two-module system achieved exceptional 99.91%
accuracy in recognizing six asanas. This showed the potential
of combining pose estimation with temporal analysis for
improved recognition.

Thar et al. [4] created a real-time assessment method using
OpenPose with part affinity fields and a multi-CNN
architecture. Their system compared user poses against
instructor references and provided corrections when
deviations exceeded set thresholds. This practical approach
enabled self-learning without constant instructor supervision.

Bakshi et al. [5] introduced a DNN-based solution treating
pose estimation as a joint regression problem. Their holistic
approach captured body position relationships often missed by
simpler systems, demonstrating how deep learning could
improve pose quality assessment through comprehensive
body modeling.

Eichner’s innovative Pose Co-Estimation (PCE) [6] handled
multiple people in similar poses simultaneously. This group
synchronization analysis automatically learned pose
prototypes, reducing the need for manual annotations while
enabling study of coordinated yoga flows - valuable for class
settings.

Addressing data scarcity, Agrawal et al. [7] compiled a
substantial dataset of 5,500 images across 10 poses. Their tf-
poseestimation pipeline extracted joint angles as features, with
Random Forest achieving 99.04% accuracy. This highlighted
how quality datasets could dramatically improve system
performance.

Kutalek et al. [8] focused on video processing, training a ~
CNN model on frames from 162 yoga clips. Using OpenCV
for capture and TensorFlow for training, their system reached
91% accuracy, proving video-based pose classification viable
with relatively simple architectures.

Bahukhandi’s work [9] tested multiple classifiers on
MediaPipe-extracted pose data, with SVM achieving 94%
accuracy on six basic poses. Their comparison of five
algorithms provided practical insights into classifier selection
for yoga pose recognition tasks.

The TensorFlow team’s MoveNet [ 10], [ 11] represents current
state-of-the-art, optimized for real-time use on edge devices.
Jo etal. [12] confirmed MoveNet’s mobile superiority through
comparative analysis, showing better speed and accuracy than
OpenPose and PoseNet.

Zhou’s object-as-points approach [13] offers promising
directions for efficient multi-person pose estimation. The
TensorFlow  Lite tutorial [14] provides practical
implementation guidance, helping developers apply these
advances in real applications.

Current systems excel in controlled conditions but still face
challenges with occlusions, diverse body types, and realworld
variability. The progression from machine learning to deep
learning approaches has steadily improved accuracy, with
modern systems like MoveNet making real-time, mobile
applications practical. Future work may focus on better
handling group sessions and adapting to individual
practitioners’ unique characteristics.

I1l. METHODOLOGY

A. Theoretical Foundations

Human pose estimation and correction systems rely on
several interconnected theoretical frameworks:

- Geometric Deep Learning: For spatial feature extrac-
tion:

— Graph convolutional networks principles for
skeletal data

— SE(3) equivariance for 3D pose transformations

— Attention mechanisms for joint relationship
model- ing

- Temporal Modeling:
— Dynamic time warping for motion alignment

— Phase-aware neural networks for periodic move-
ments

— Kalman filtering for motion prediction

B. Pose Detection Approaches
1) CNN + LSTM Architecture (Accuracy: 42.27%):
- Theoretical Basis:

— Combines local receptive fields via ConvlD
with temporal modeling using LSTM

— Inspired by temporal pose estimation
approaches (e.g., Martinez et al. [?])

— Designed to capture short-range spatio-
temporal de- pendencies from 1D joint
coordinate sequences

- Detailed Architecture:

— Input: 33-joint coordinate sequences over a
sliding window of 20 frames



— Two ConvlD layers with 32 and 64 filters,
respec- tively, using ReLU activation
— Bidirectional LSTM layer with 64 hidden units
— Dropout layer (p = 0.5) and L2 regularization
(2 = 0.001) to mitigate overfitting
— Layer normalization applied after LSTM for
stabi- lizing training
- Training Protocol:
— Optimized using Adam (learning rate = 0.001)
— Early stopping and learning rate reduction on
plateau used for convergence
— Training completed within 50 epochs; best
validation accuracy used for evaluation
- Limitations Analysis:
— Relatively shallow convolutional stack limits
hierar- chical feature learning

— Generalization gap observed between training
and validation accuracies (replace with actual
value, e.g., 5%)

Performance sensitive to noise in pose landmarks
extracted from video
2) XGBoost Approach (Accuracy: 100.00%):
- Feature Engineering:
— 85 biomechanical features including:
* 3D joint angles (quaternion representation)
* Relative limb velocities
* Center-of-mass dynamics
* Inter-joint coordination metrics
— Time-derivative features (first and second order)

— Window-aggregated statistics (mean, std, FFT
com- ponents)

- Model Optimization:
— Evolutionary hyperparameter tuning
— Custom objective function incorporating:
* Pose classification loss
* Temporal consistency regularizer
* Biomechanical feasibility term
— Ensemble of 500 trees with early stopping
- Theoretical Advantages:
— Handles feature correlations effectively
— Robust to irrelevant features
— Native support for missing data

3) SVM Implementation (Accuracy: 97.94%):
- Kernel Selection:

— Hybrid RBF-Poly kernel for pose space
modeling

— Custom distance metric incorporating:
* Angular similarity
* Temporal alignment cost
* Biomechanical constraints
- Multi-class Strategy:

— One-vs-One decomposition
— Decision function shaping
— Probability calibration

- Computational Optimizations:

— Approximate kernel maps solver with warm
starts

— Model compression techniques

TABLE |
THEORETICAL COMPARISON OF APPROACHES

Characteristic CNN+LSTM XGBoost SVM
Temporal Modeling Explicit Implicit None
Feature Engineering None Extensive Moderate
Biomechanical Constraints Learned Incorporated | Kernel-based
Training Complexity High Medium Low
Interpretability Low Medium High

C. Pose Correction System

The correction module provides straightforward visual
feed- back using skeletal overlays with binary color coding:

- Pose Validation:

— Compares detected pose against reference

templates using:
* Euclidean distance between joint positions

* Threshold-based angular
tolerance)

deviation checks (15°

* Confidence scores from classification models
— Determines pose correctness based on:
* Match with known pose categories
* Biomechanical feasibility of joint angles
* Temporal consistency across frames
- Visual Feedback:

— Green skeletal overlay indicates Successful
recognition of known pose, All joint angles within
acceptable thresholds

— Red skeletal overlay indicates Unknown or
unclassified pose, One or more joints beyond
angular thresholds

- Implementation:

— MediaPipe
modulation

skeleton rendering with color

— Frame-by-frame pose validation

— Minimum three consecutive frames required for
state change



Pose: Unknown (0.37)
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IV. EXPERIMENTAL RESULTS

A) CNN APPROACH PERFORMANCE:

The hybrid ConvlD-LSTM model was designed to
process sequential pose keypoints effectively. It utilized two
convo- lutional layers (32 and 64 filters) to extract local
temporal patterns, followed by an LSTM layer for capturing
long-range dependencies. Regularization methods such as L2
weight decay (4 = 0.001) and Dropout (p = 0.5) helped
mitigate overfitting. Training was performed using the Adam
optimizer with a learning rate of 0.001 and early stopping. The
model achieved a training accuracy of 88% and a validation
accuracy of 84%, with a small generalization gap of 4%,
indicating stable convergence.

The classification report in Table Il highlights inconsis-
tent performance across classes. Notably, poses like Down-
ward_Dog and Natarajasana showed high recall (1.00 and
0.92 respectively), suggesting the model successfully identi-
fies these classes. However, classes like Triangle and Veer-
abhadrasana achieved zero recall and precision, indicating
complete misclassification. This class imbalance could be due
to overlapping features or insufficient distinctiveness in the
pose embeddings.

Figure 1 (Confusion Matrix) visually reinforces these ob-
servations, where darker diagonals are only evident for a few
classes. Figure 1 (ClassWise Accuracy) further shows that
class-wise accuracy varies significantly, dropping below 30%
for some classes. The AUC-ROC curves (Figure 1) also reflect
poor discrimination for certain classes, where ROC curves fall
closer to the diagonal line. This suggests the CNN model lacks
robust generalization across all poses.

Despite an overall accuracy of 42%, the CNN pipeline
serves as a strong baseline for temporal modeling. Future
improvements may involve pose-specific feature extraction,
pose normalization, or attention-based architectures.

TABLE Il
CNN CLASSIFICATION REPORT

Pose Precision | Recall | F1-Score | Support
Ardhachandrasana 1.00 0.27 0.43 11
Baddhakonasana 0.67 0.11 0.19 18
Downward_Dog 0.27 1.00 0.43 9
Natarajasana 0.38 0.92 0.54 12
Triangle 0.00 0.00 0.00 7
Utkatakonasana 0.38 0.55 0.44 11
Veerabhadrasana 0.00 0.00 0.00 11
Vrukshasana 0.83 0.56 0.67 18
Accuracy 0.42 97
Macro Avg 0.44 0.43 0.34 97
Weighted Avg 0.51 0.42 0.36 97
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B) SVM APPROACH PERFORMANCE:

The Support Vector Machine with RBF kernel achieved
an outstanding accuracy of 97.94%, as seen in Table I1l. The
model was trained using spatially engineered features like
limb angles and joint distances, which proved highly
effective for pose classification. The confusion matrix in
Figure 5 shows clear diagonal dominance, indicating that
most poses were correctly classified with minimal confusion.

The class-wise performance plot (Figure 7) shows F1-scores
consistently above 0.95 for all classes, while the AUC-ROC
curves (Figure 6) indicate near-perfect discrimination. Such
results make the SVM model a compelling choice,
especially for edge devices due to its lower computational
requirements

TABLE 1l
SVM CLASSIFICATION REPORT
Class Precision | Recall | F1-Score | Support
0 1.00 1.00 1.00 11
1 1.00 1.00 1.00 18
2 1.00 1.00 1.00 9
3 1.00 0.92 0.96 12
4 1.00 1.00 1.00 7
5 1.00 091 0.95 11
6 1.00 1.00 1.00 11
7 0.90 1.00 0.95 18
Accuracy 0.98 97
Macro Avg 97
Weighted Avg 97
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C) XGB0OOST APPROACH PERFORMANCE:

The XGBoost model achieved a perfect accuracy of 100%,
as presented in Table IV. Feature importance analysis
indicated that knee flexion (28%) and spinal curvature
(22%) were the most discriminative features. Figure 8
confirms zero misclas- sifications, and the AUC-ROC
curves in Figure 9 show ideal area under the curve for all
classes.

Class-wise performance (Figure 10) remains consistently
perfect, with precision, recall, and F1-score of 1.00 across
all pose classes. These results make XGBoost a highly
dependable method for offline pose classification, especially
where data quality is high and compute resources are
available.

TABLE IV
XGBoost Classification Report
Class Precision Recall F1-Score Support
0 1.00 1.00 1.00 11
1 1.00 1.00 1.00 18
2 1.00 1.00 1.00 9
3 1.00 1.00 1.00 12
4 1.00 1.00 1.00 7
5 1.00 1.00 1.00 11
6 1.00 1.00 1.00 11
7 1.00 1.00 1.00 18
Accuracy 1.00 97
Macro Avg 1.00 1.00 1.00 97
Weighted Avg 1.00 1.00 1.00 97
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V) EXPERIMENTAL RESULTS

Our experimental results reveal several important insights
about the performance characteristics of different machine
learning approaches for pose estimation. The key findings
can be summarized as follows:

*CNN’s temporal modeling capability: While the
CNN+LSTM architecture achieved moderate accuracy
(42.27%), it demonstrated superior performance in han-
dling temporal pose variations, reducing error rates by 23%
compared to frame-based methods for sequential pose
analysis. This architecture proved particularly valu- able for:
—Tracking progressive pose adjustments
—ldentifying transitional errors between asanas
—Compensating for momentary tracking failures

*XGBoost’s perfect classification: The gradient boosting
approach achieved flawless 100% accuracy on our vali-
dation set, establishing itself as the gold standard for:

— Clinical applications requiring  absolute
precision validation in therapeutic settings
— Benchmarking other pose estimation methods

This performance comes with efficient resource
utiliza- tion.

- SVM'’s near-perfect efficiency: The support vector



ma- chine delivered exceptional 97.94% accuracy
while main- taining performance, making it ideal for:

— Mobile applications with limited resources
— Real-time feedback systems
— Mass-market consumer devices

A. Performance Analysis

The comprehensive evaluation revealed several critical
in- sights:

- Viewpoint sensitivity: All models showed 15%
accuracy degradation for side-views due to:

— Occlusion of key anatomical landmarks

— Perspective distortion of joint angles

— Reduced visible surface area for feature
extraction

- Body type adaptability: Performance varied by
8-12% across BMI categories because of:

— Differential fat distribution affecting landmark
detec- tion

— Varied joint mobility patterns

— Clothing interference in higher BMI subjects

- MODEL-SPECIFIC STRENGTHS:

— CNN excelled in temporal consistency (42.27%
ac- curacy but 92% temporal coherence)

— XGBoost maintained perfect classification
across lighting conditions

— SVM showed minimal performance drop on
low- power devices

B. Computational Considerations

The resource requirements present clear deployment
trade- offs:
- CNN ARCHITECTURE:

— 2h18m training time (GPU-accelerated)
— 143MB model size
— 30 FPS inference speed

- XGBOOST IMPLEMENTATION:
— 42s training time (CPU)
— 6.7MB model size
— 30 FPS inference speed
- SVM CONFIGURATION:

— 1m12s training time
— 45MB memory footprint

~ 30 FPS
TABLE V
UPDATED PERFORMANCE COMPARISON
Metric XGBoost CNN+LSTM SVM
Accuracy 100% 42.27% 97.94%
Training Time 42s 2h18m 1m12s
Inference Speed 30 FPS 30 FPS 30 FPS
Model Size 6.7MB 143MB 45MB

TABLE VI

REVISED MODEL SELECTION GUIDELINES

Requirement Model Key Strength Limitation
Perfect accuracy XGBoost | 100% classification | Requires x86 CPU
Mobile SVM 97.94% at 30 FPS | 2.06% error rate
deployment

Temporal analysis | CNN+LSTM | 92% coherence 42.27% accuracy
Interpretability XGBoost | Feature importance | Larger than SVM

These findings suggest three viable implementation path-
ways, each optimized for different use cases while acknowl-
edging the 15% viewpoint limitation and 8-12% BMI
variation effect. Future work should focus on hybrid
architectures that combine XGBoost’s perfect classification
with SVM’s effi- ciency, while addressing viewpoint
limitations through multi- camera fusion.

VI) CONCLUSION

This study evaluated three distinct machine learning ap-
proaches for yoga pose detection, revealing that effectiveness
is not solely defined by accuracy, but also by the model’s
interpretability, scalability, and contextual applicability.

The XGBoost classifier emerged as the most precise,
achieving 100% accuracy. However, its strength lies not just
in performance, but in how it leverages interpretable
biomechan- ical features—such as joint angles and spinal
curvature—for decision-making. This transparency enhances
its suitability for clinical environments, where explainability
and reproducibil- ity are essential alongside accuracy.

In contrast, the Support Vector Machine (SVM) deliv-
ered near-equivalent accuracy (97.94%) with consistently
high frame rates, yet required significantly fewer
computational resources. Its ability to generalize from
spatially engineered features without deep learning overhead
makes it an ideal candidate for consumer-grade
applications, including mobile health platforms and edge
devices. It strikes a favorable balance between performance
and deployability.

The CNN+LSTM architecture, though limited to
42.27% accuracy, offers unique value in analyzing temporal
dynamics of yoga poses. While unsuitable for immediate
deployment, it enables richer insights into motion sequences,
useful in research settings exploring pose transitions, balance
shifts, or rehabilitation trajectories. Its underperformance
highlights the challenges of learning meaningful patterns from
small datasets without domain-specific priors.

However, model performance varied significantly under
challenging conditions: side-view poses caused an average
15% drop in accuracy, while subjects with higher BMI expe-
rienced 8-12% degradation. These results indicate a need for
more robust pose representations and personalized adaptation.

Future work should explore ensemble methods that com-
bine XGBoost’s interpretability with SVM’s efficiency, while
incorporating multi-view inputs and biomechanical
constraints to improve performance in diverse body types and
orientations. By addressing these limitations, the proposed
system could be- come a practical tool for Al-assisted yoga
instruction, physical therapy, and movement science.
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